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Abstract

The field of Embodied Al predominantly relies on simula-
tion for training and evaluation, often using either fully syn-
thetic environments that lack photorealism or high-fidelity
real-world reconstructions captured with expensive hard-
ware. As a result, sim-to-real transfer remains a major
challenge. In this paper, we introduce EmbodiedSplat,
a novel approach that personalizes policy training by ef-
ficiently capturing the deployment environment and fine-
tuning policies within the reconstructed scenes. Our method
leverages 3D Gaussian Splatting (GS) and the Habitat-Sim
simulator to bridge the gap between realistic scene cap-
ture and effective training environments. Using iPhone-
captured deployment scenes, we reconstruct meshes via GS,
enabling training in settings that closely approximate real-
world conditions. We conduct a comprehensive analysis
of training strategies, pre-training datasets, and mesh re-
construction techniques, evaluating their impact on sim-
to-real predictivity in real-world scenarios. Experimen-
tal results demonstrate that agents fine-tuned with Embod-
iedSplat outperform both zero-shot baselines pre-trained
on large-scale real-world datasets (HM3D) and syntheti-
cally generated datasets (HSSD), achieving absolute suc-
cess rate improvements of 20% and 40% on real-world Im-
age Navigation task. Moreover, our approach yields a high
sim-vs-real correlation (0.87-0.97) for the reconstructed
meshes, underscoring its effectiveness in adapting policies
to diverse environments with minimal effort. Project page:
https://gchhablani.github.io/embodied-splat.

1. Introduction

Recent advancements in Embodied Al have demonstrated
impressive performance in simulated environments [17, 18,
32, 44, 46]. However, translating these capabilities to phys-
ical robots remains a significant challenge, primarily due to
limitations in simulation fidelity and accessibility [21]. A
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Figure 1. Overview of EmbodiedSplat: Mobile phone captures
are used to generate reconstructed meshes via 3D Gaussian Splat-
ting (GS). Agents are trained within these reconstructed environ-
ments in simulation before being deployed in the real world, en-
abling effective sim-to-real transfer. Our analysis demonstrates
a strong sim-to-real correlation across both types of generated
meshes, highlighting their ability to bridge the gap between simu-
lation and real-world performance.

key bottleneck is the sim-to-real gap, where handcrafted or
synthetic simulation environments (e.g. HSSD [25]) strug-
gle to capture the complexity and variability of real-world
settings, necessitating the use of real-world reconstructions
for effective policy training. On the other hand, real-world
datasets such as Matterport3D [8] and HM3D [41] rely
on expensive capture equipment and labor-intensive recon-
struction pipelines, making large-scale scene collection and
adaptation impractical for many applications. Furthermore,
it is difficult to fully capture the variability of potential de-
ployment environments with these datasets.

Developments in 3D scene representations, particularly
3D Gaussian Splatting (GS) [24], have shown promise to-
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Work Goal Type E2E | Real | S2R
SplatNav [11] | Point/Language X v X
GaussNav [27] | Image [26] X X X
Ours Image v v v

Table 1. Comparison against recent works using GS for navi-
gation.“E2E” indicates whether the policy is trained end-to-end,
“Real” denotes evaluation on real-world robots, and “S2R” indi-
cates demonstrated sim-to-real transfer.

wards reducing the effort needed to capture new scenes, en-
abling high-quality scene reconstruction from casual mo-
bile phone captures. These approaches offer a strong abil-
ity to handle complex geometry, perform novel-view view
synthesis, and provide high visual fidelity. Building upon
this foundation, methods like DN-Splatter [49] have further
enhanced mesh reconstruction quality through depth-and-
normal regularization. However, their potential for training
robot navigation policies and deploying them in the real-
world has remained largely unexplored.

In this work, we explore the following question: Can
low-effort cellphone video captures be leveraged to gener-
ate meshes that facilitate the training of Embodied Al nav-
igation policies for effective transfer to the target environ-
ment? In other words, we seek to personalize models by
training them directly on the target distribution, as repre-
sented by 3D models built from low-cost and low-effort
data collects of the deployment environment. Some re-
cent works indeed explore GS for navigation - GaussNav
[11, 27] explores Instance-Image Navigation [26] in sim-
ulation using GS; SplatNav [11] explores using GS-based
collision meshes for collision avoidance and localization
in a single real-world environment using a modular pol-
icy for a drone. In contrast, as shown in Tab. 1, we ex-
plore end-to-end policy learning for image-goal navigation
and sim-to-real transfer in indoor environments. To the best
of our knowledge, we are the first to explore an approach
to solve the personalized real-to-sim-to-real problem using
Gaussian Splats for indoor image-goal navigation.

To achieve the above goal, we present a comprehensive
framework for leveraging open-source 3D Gaussian Splat-
ting [24] (and compare with Polycam [38]). The central
premise of our work is that it is possible to quickly cap-
ture the scenes in which a robot will be deployed, using
readily available consumer-grade hardware, and seamlessly
integrate them into simulation environments (i.e. Habitat-
Sim [39]). Policies can then be trained in these simulated
environments, leading to improved sim-to-real transfer. Our
approach combines the accessibility of smartphone-based
scene capture with recent advances in depth-aware 3D scene
representation, enabling rapid training and deployment of
navigation policies in new, realistic environments.

However, there are several challenges and open ques-

tions, ranging from reconstruction quality to finetuning
strategies, to enabling successful transfer. Building on
the work of Silwal et al. [46] as a baseline, we test our
framework across a range of scenes captured in a univer-
sity environment, which is out-of-distribution for typical
pre-trained policies. We analyze factors affecting transfer
performance, including trade-offs between mesh genera-
tion pipelines, mesh quality for policy training, and train-
ing strategies (e.g., zero-shot vs. fine-tuning). Through
rigorous evaluation and real-world robot experiments, we
show that our approach yields significant gains in real-world
image-goal navigation.

Our key contributions can be summarized as follows:

1. An efficient and cost-effective pipeline for bridging
the real-to-sim gap in navigation, enabling the cre-
ation of high-quality simulation scenes from low-cost,
consumer-grade iPhone captures using depth-aware 3D
Gaussian Splats (GS) and Polycam.

2. Comprehensive evaluations conducted in both simula-
tion and real-world environments, assessing zero-shot
and fine-tuned policies on our Captured scenes. Our
results demonstrate substantial improvements in sim-
to-real transfer, emphasizing the effectiveness of fine-
tuning on high-fidelity reconstructions.

3. In-depth analysis addressing key research questions,
exploring the relationship between reconstruction
quality, pre-training scenes, downstream navigation
performance, and training strategies. For example,
a notable finding is that overfitting policies on a single
high-fidelity scene reconstruction in simulation yields
reasonable real-world performance. Our findings pro-
vide valuable insights into how reconstruction fidelity
influences policy generalization and its applicability to
real-world scenarios.

4. An open-source codebase and dataset to facilitate further
research in this domain and reproducibility of results.

Through this work, we aim to make high-quality scene col-
lection and agent training more accessible, as well as enable
easy development of personalized agents.

2. Related Work

2.1. Scene Datasets

Recent years have seen rapid progress in the development of
high-quality 3D scene datasets for embodied Al research.
The Matterport3D dataset [8] provides 10,800 panoramic
views from 194,400 RGB-D images across 90 building-
scale scenes, complete with surface reconstructions and se-
mantic annotations. Building upon this, HM3D [41] ex-
panded the scale to 1,000 building-scale 3D reconstruc-
tions from diverse real-world locations, though some issues
with mesh quality were noted. The Gibson dataset [53]
introduced another collection of real-world scans, while



synthetic datasets like HSSD [25] (with 211 realistic en-
vironments) demonstrated that smaller but higher-quality
datasets can sometimes be better than larger ones for agent
training. Another dataset that is commonly used is Replica-
CAD [47] which provides synthetic variations in layouts of
a single scene. In this work, we use HM3D [41] for training
our zero-shot baseline, as it is one of the largest photore-
alistic indoor-scene datasets captured using Matterport [1]
cameras. Additionally, we use HSSD [25] as the synthetic
counterpart for another zero-shot baseline. Note, however,
that these scenes do have a bias towards apartments, and we
therefore test our methods on scenes within a university en-
vironment, which is out-of-distribution for these datasets.
The MuSHRoom dataset [42] provides multi-sensor cap-
tures of 10 real-world scenes, offering benchmarks for re-
construction and novel view synthesis methods. While this
dataset has not been used for embodied tasks in prior works,
our dataset collection method is inspired by the MuSHRoom
dataset’s iPhone captures. We evaluate our agents, as well
as reconstruction strategies, on these scenes to benchmark
our depth and normal encoders.

2.2. Embodied Navigation in Indoor Environments

Embodied navigation encompasses various forms of goal-
directed navigation tasks [2, 6, 9, 26, 31, 50, 55, 56]. This
study primarily investigates ImageNav [2, 55, 56] in indoor
environments. Recent advancements in image-goal navi-
gation have explored a variety of approaches to enhance
performance and generalization. Notably, pre-trained vi-
sual representations [32, 46, 55, 56] have shown substan-
tial promise in improving performance on the ImageNav
task. In particular, Silwal et al. [46] demonstrate remark-
able zero-shot success rates (90%) on real-world ImageNav,
leveraging VC-1 [32], fine-tuned end-to-end with data aug-
mentation. Inspired by this, we use the setup in Silwal et al.
[46] for our policy training and evaluation.

Sim-to-real transfer remains a core challenge in Embod-
ied Al beyond leveraging pre-trained visual encoders. Ka-
dian et al. [21] proposed the Sim-vs-Real Correlation Co-
efficient (SRCC) to quantify how well PointNav perfor-
mance in simulation predicts real-world results. We build
on this idea to evaluate the sim-to-real predictivity of our
Captured meshes.

A closely related work is Phone2Proc [13], which
demonstrates enhanced sim-to-real ObjectNav performance
by generating layouts from iPhone RoomPlan API captures.
While similar to our approach in utilizing iPhone captures,
our methodology differs in that we capture the entire room
without focusing on layouts, nor do we perform any post-
processing of scenes or generate multiple variations of the
same scene for agent training. Instead, we generate meshes
from our captures, fine-tune pre-trained policies for Image-
Nav task, and deploy them subsequently.

2.3. 3D Scene and Mesh Reconstruction

In this work, we adopt DN-Splatter [49] for its simplicity
and superior performance (and compare to meshes from
Polycam [38], which is not open-source). DN-Splatter uses
depth-and-normal regularization to improve mesh quality.
While mesh reconstruction has also been explored with
NeRFs [35], we choose GS for 3D reconstruction due to
their fast training and rendering speeds, improving the
overall efficiency of the pipeline. For an expanded list of
related works on this topic, please see Appendix D.1.

2.4. 3D Representations for Embodied AI/Robotics

There have been works which explore sim-to-real manip-
ulation [7, 28, 52]. In this work, we attempt to solve the
problem of sim-to-real navigation, laying the foundation
for a diverse range of embodied tasks, such as object-goal
navigation, rearrangement, and mobile manipulation, which
require room-, apartment-, and building-level scene rep-
resentations. Capturing high-quality 3D Gaussian Splats
(GS) is relatively straightforward for tabletop manipula-
tion tasks, whereas large-scale scene reconstruction poses
greater challenges — a key aspect of this work. Recent
works also explore the use of GS in solving the embod-
ied navigation problem. GaussNav [27] presents a semantic
Gaussian-based map reconstruction for the HM3D-Instance
ImageNav [26] task. Splat-Nav [11] introduces a two-stage
pipeline for planning and pose estimation through Gaus-
sian Splat Maps. Tab. 1 highlights the differences between
our approach and recent works utilizing GS for naviga-
tion. By capturing the entire scene using mobile phones,
we enable personalization to specific scenes, as well as
the potential to scale scene collection in the future. Some
works [33] explore automated 3D scene capture using robot
cameras in simulation, but these methods require complex,
embodiment-dependent strategies that are time-consuming
and difficult to scale. In contrast, our approach leverages
human captures in the real-world, offering a fast and scal-
able solution without the need for intricate planning. For
more related work on this topic, please see Appendix D.2.

3. Methodology

The overall pipeline for bridging and integrating a real-
world scene with Habitat-Sim [39] is shown in Fig. 2. In
the following subsections, we discuss each stage of the
pipeline in detail. Sec. 3.1 discusses the datasets used
and the details of scene captures. Sec. 3.2 discusses the
second stage, where these captures are converted to meshes.
Sec. 3.3 discusses how ImageNav episodes are created,
which is a crucial part of integrating the scene with Habitat
Simulator [39]. Appendix H discusses agent training and
evaluation details. For details on real-world deployment
setup, refer to Appendix A.
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Figure 2. The EmbodiedSplat Pipeline: Pipeline for integration of real-world captures with Habitat-Sim [39] and subsequent deployment.
The first stage (a.) involves capturing the scene using Polycam [38] and Nerfstudio [48] which produces RGB frames, associated iPhone
GT depth maps, and poses. In the second stage (b.), we use DN-Splatter [49] to train GS using depth and normal regularization, with
normals from Metric3D-V2 [16] monocular encoder. A mesh (.ply) is created using Poisson reconstruction from the GS. In the third
stage (c.), the mesh is processed and loaded into Habitat-Sim [39] for training the agent in simulation. In the last stage (d.), the policy is
deployed in the real-world in the same scene for image-goal navigation.

3.1. Datasets and Scene Captures

Scene Datasets: We use two datasets for pre-training Im-
ageNav policies, which serve as zero-shot baselines and
pre-trained policies for our scenes, both in simulation and
real-world evaluations. Specifically, we use the HM3D [41]
dataset which consists of apartment-scale scenes split into
800 training and 100 validation scenes, and the HSSD [25]
dataset split into 134 training and 33 validation scenes.

Captured Scenes: To evaluate the feasibility of the
pipeline and conduct real-world experiments, we capture
scenes from a university environment (classroom, commu-
nity lounges, conference rooms, etc). For custom data col-
lection with an iPhone, we follow the procedure used for
collecting the MuSHRoom dataset [42]. Specifically, we use
an iPhone 13 Pro Max to record the iPhone RGB-D data
using the Polycam application [38]. Polycam provides an
assistive interface to ensure that all the details of the scene
have been sufficiently covered during the capture. We use
the default settings with Polycam and export the raw data
exposed by the application. Subsequently, we use Nerf-
studio [48] to process the RGB-D data and sample 1000
aligned RGB-depth frames with low blur scores and cor-
responding poses. Additionally, Polycam also provides a
mesh with its exported data. We use this mesh for compar-
ison purposes, referred to as POLYCAM meshes throughout
the paper. Unlike Ren et al. [42], we use a manually-held
iPhone for capture instead of a gimbal, enabling us to evalu-
ate whether the process remains effective and easily replica-
ble without relying on expensive capture equipment. Each
capture requires 20-30 minutes of recording with Polycam.
We repeat this process for different indoor scenes, which we

refer to as lounge, classroom, conf_a, and conf_b.
The scale of these of these scenes is similar to those in the
MuSHRoom dataset (1-3 rooms) [42].

MuSHRoom Dataset: We use MuSHRoom [42] dataset for
benchmarking. The dataset consists of long and short se-
quences of 10 indoor scenes, captured with iPhone, Kinect,
and Faro Scanner. In our work, we only use the iPhone
long-sequences for training and evaluation purposes. We
benchmark different normal encoders on all 10 scenes (see
Appendix G) for DN-Splatter [49]. For agent training and
evaluation, we primarily use three scenes - honka, sauna,
activity - which have varied scale and complexity.

3.2. 3D Scene and Mesh Reconstruction

For mesh reconstruction, we use DN-Splatter [49] as our
method of choice for its superior performance on mesh
reconstruction in comparison to others, and simplicity of
its integration with Habitat-Sim [39]. DN-Splatter lever-
ages depth-normal regularization, and smoothness losses
to maintain geometric consistency during Gaussian Splat
training. For mesh reconstruction, the rendered depth and
normal maps are back-projected from training views to cre-
ate a point-set for meshing.

We use the default hyperparameters from DN-
Splatter [49] and train the GS for 30,000 iterations.
We use sensor depth A4 0.2, and enable the depth
smoothness and normal losses. Metric3D-V2 [16] is
used as the normal encoder instead of Omnidata [14, 23],
as empirical results demonstrate it yields higher-quality
meshes. For further discussion on depth and normal
encoder selection, see Appendix G.
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Figure 3. Reconstructed meshes of the Captured scenes after DN-Splatter [49] training and Poisson reconstruction.

After training GS and converting into ply meshes, we
convert the meshes to g1b in Blender (see Appendix E) be-
fore loading them in Habitat-Sim [39]. The final meshes
for our Captured scenes are shown in Fig. 3 and referred
to as DN mesh hereafter to contrast against the POLYCAM
mesh counterpart. It takes approximately 20-30 minutes per
capture, and 1-2 hours of training with DN-Splatter [49] to
generate these meshes, which is significantly lesser com-
pared to the cost and several hours of capture and process-
ing with Matterport [1] cameras.

3.3. ImageNav Episode Generation

Pre-training Scene Datasets: For the HM3D [41] and
HSSD [25] datasets, we use the predefined train-validation
split, generating 10,000 episodes for each training scene and
25 episodes for each validation scene (see Appendix B).
Captured and MuSHRoom Scenes: For scenes with DN
meshes and POLYCAM meshes, we select only the largest
navmesh island within each scene. We ensure that the
largest island covers most, if not all, of the navigable areas
in the scene. This step is crucial due to the relatively smaller
sizes of these scenes compared to HM3D scenes. Hence,
we generate only 1000 training episodes and 100 evalua-
tion episodes per scene. By selecting the largest navmesh
island, we minimize the risk of incorrectly treating entities
other than the floor as navigable.

Evaluation Metric: We consider Success Rate (SR), the
fraction of successful episodes out of all the episodes, as
the primary metric for performance evaluation of our poli-
cies. An episode is considered successful if the agent stops
within 1m of the goal location before the maximum number
of steps (1000 for simulation, 100 for real) are over.

4. Experiments

This section aims to answer the following research ques-

tions:

1. How does a pre-trained policy perform on Captured
and MuSHRoom scenes? (Sec. 4.1)

2. Does fine-tuning on the Captured and MuSHRoom
scenes improve performance? (Sec. 4.2).

3. Does the performance in simulation transfer to the real-
world? (Sec. 4.3).
Further experiments and analyses are discussed in Sec. 5.

4.1. How does a pre-trained policy perform on
Captured and MuSHRoom scenes?

In this experiment, we evaluate the pre-trained policies
that achieved the highest validation success rates on the
HM3D [41] (83.08% val SR) and HSSD [25] (63.15% val
SR), trained for 600M and 1200M steps, respectively. Note
that the performance on HM3D is consistent with the sim-
ulation results reported in Silwal et al. [46] and represents
the current state-of-the-art for this task. For agent embod-
iment, policy training and evaluation details, please refer
to Appendix H. We assess the zero-shot generalization of
these policies within simulation, evaluating their perfor-
mance across different meshes for individual scenes.

HM3D Zero-Shot Results on Captured and MuSHRoom Scenes
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Figure 4. Zero-shot val. SR for HM3D pre-trained policy.

Fig. 4 presents the results of the zero-shot evaluation
across individual scenes for the HM3D pre-trained policy.
Performance varies significantly based on scene size, com-
plexity, and mesh type. For smaller scenes such as conf_a
and conf_b, the policy demonstrates relatively high suc-
cess rates in both DN mesh and POLYCAM settings, achiev-
ing 85% (DN) and 82% (PoLYCAM) for conf_a and 88%
(DN mesh) and 79% (POLYCAM) for conf_b.

In contrast, performance declines in larger environments
such as classroom and 1ounge. In classroom, suc-
cess rates drop to 53% with DN mesh and 42% with POLY-
CAM, while in lounge, the policy achieves 50% (DN



HSSD Zero-Shot Results on Captured and MuSHRoom Scenes
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Figure 5. Zero-shot val. SR for HSSD pre-trained policy.

mesh) and 76% (POLYCAM). These results highlight the
challenge of transferring the policy to more complex, large-
scale environments that differ from the training data. Since
HM3D consists primarily of apartment-style scenes, the
policy has not been exposed to classrooms or community
lounges during training. Both DN and POLYCAM meshes
yield similar success rates on average(~ 60%), suggest-
ing no clear advantage of one mesh type over the other in
aligning with HM3D. Additionally, we evaluate the poli-
cies on three scenes from the MuSHRoom [42] dataset. Due
to the unavailability of POLYCAM meshes for MuSHRoom,
we conduct evaluations solely on DN meshes. The pol-
icy achieves a 95% success rate in the sauna and honka
scenes, suggesting promising potential for performance im-
provements through additional scene refinements (such as
using a gimbal during capture). However, in the larger
activity scene, performance declines, indicating chal-
lenges in generalizing to larger environments.

Fig. 5 reveals similar trends for the HSSD pre-trained
policy, though with significantly lower success rates over-
all. This degradation in performance can be attributed to the
synthetic nature of HSSD scenes, which lack the realism
and scale necessary for effective generalization. The policy
performs particularly poorly on classroom, achieving
only 1% success on both DN mesh and POLYCAM, while
performance in lounge is slightly better, reaching 14%
success with POLYCAM. The policy exhibits slightly
improved performance on other scenes, but it is hard to
conclude which mesh type best aligns with HSSD.

4.2. Does fine-tuning on the Captured and
MuSHRoom scenes improve performance?

In this section, we investigate whether fine-tuning the
pre-trained policies for only 20M additional steps improves
performance in simulation. The learning rate is set to
2.5e—6 for the LSTM policy and 6e—7 for the visual
encoder, following a fine-tuning strategy similar to that
of Deitke et al. [13]. We fine-tune the pre-trained policy on
the training episodes for a single scene and evaluate on the
corresponding validation episodes.

The results are presented in Fig. 6 and Fig. 7. We ob-

HM3D Fine-tuned Results on Captured and MuSHRoom Scenes
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Figure 6. Fine-tuned validation SR from HM3D pre-trained
policy: The policy is fine-tuned and evaluated on the same mesh.

HSSD Fine-tuned Results on Captured and MuSHRoom Scenes
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Figure 7. Fine-tuned validation SR from HSSD pre-trained
policy: The policy is fine-tuned and evaluated on the same mesh.

serve that fine-tuning significantly improves performance
across all tested scenes. For the pre-trained HM3D pol-
icy, fine-tuning for 20M steps results in success rates ap-
proaching 90%+ across different meshes. Similarly, for the
HSSD pre-trained policy, fine-tuning leads to substantial
improvements, with most policies achieving success rates
of 80%+ in respective scenes. In particular, performance
gains are particularly pronounced in larger, more complex
environments such as classroom and lounge, which
differ significantly from apartment-style scenes in HM3D
and HSSD. These results indicate that our pipeline can
effectively be used to collect diverse scene data at scale.
Furthermore, they suggest that agents can be quickly fine-
tuned (only 20M steps vs 100M+ steps for training from
scratch) on these generated meshes to improve performance
on specific scene types, enhancing personalization beyond
the original training distribution. We present results on ad-
ditional scenes in Appendix J.

4.3. Does the performance in simulation transfer to
the real-world?

We evaluate both zero-shot and fine-tuned policies in the
real-world 1ounge scene on a Stretch robot. During the
evaluation, each episode is capped at 100 steps, with 10
distinct start-and-goal locations sampled within the scene
(see Appendix A for deployment details). To assess per-
formance, we record the number of steps taken and final



distance to the goal at the end of each episode, determining
whether the agent successfully completes the task.

Real-world performance on lounge scene
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Figure 8. Real world results of zero-shot and fine-tuned models
on lounge scene. HM3D-ZS (real dataset) leads to a better suc-
cess rate than HSSD-ZS (synthetic dataset). We observe increased
real-world success with fine-tuning on DN and POLYCAM meshes
for both HM3D and HSSD policies.

Fig. 8 presents results across 10 evaluation episodes.
The zero-shot HM3D policy achieves a 50% success rate,
demonstrating our hypothesized lack of generalization.
This is in contrast with the results reported in Silwal et al.
[46] showing 90% zero-shot success rate in the real-world.
We attribute this discrepancy to the structural and semantic
differences between the 1ounge and the apartment-style
scenes typically encountered in HM3D. Fine-tuning on the
PoLycAM and DN mesh reconstructions of this scene im-
proves performance, with success rates increasing to 70%.
For HSSD, zero-shot performance is significantly lower at
10%, while fine-tuned policies improve success rates to
50% with PoLYCAM and 40% with DN mesh.

Fig. | illustrates the Sim-to-Real Correlation Coefficient
(SRCC) [21] between simulation and real-world perfor-
mance. The observation suggests that improvements in
evaluation performance on DN and POLYCAM meshes in
simulation translate to improved real-world performance.
This demonstrates that our approach can efficiently adapt
policies to novel real-world environments. We discuss real-
world statistics (number of steps, distance) in Appendix .

5. Ablations and Analysis

In this section, we systematically investigate critical fac-
tors influencing policy performance. First, we assess
whether pre-training on large-scale datasets such as HM3D
or HSSD is necessary for effective real-world transfer
(Sec. 5.1). Next, we analyze the impact of validation
PSNR and scene geometry on the zero-shot performance
(Sec. 5.2). Finally, we examine whether continuous train-
ing on large-scale datasets improves zero-shot performance
on our Captured scenes, shedding light on the relation-
ship between dataset characteristics and generalizability
(Sec. 5.3).

5.1. Is it necessary to pre-train over large-scale
datasets?

In this experiment, we investigate the necessity of pre-
training on large-scale datasets by ‘“overfitting” policies
directly on POLYCAM and DN meshes with a policy trained
from scratch (not pre-trained on large-scale datasets such as
HM3D or HSSD) for ~100M steps. Training and validation
data are derived from ImageNav episode generation, as de-
scribed in Sec. 3.3. To ensure diversity, start-goal locations
for training and evaluation episodes are randomly sampled.
The best validation success rates for all policies on their
respective scenes are presented in Fig. 9. As expected,
the overfitted policies achieve near-perfect performance in
simulation, maintaining high success rates. For a detailed
discussion on why overfitting results seem better than
fine-tuning in this scenario, please see Appendix L.

Overfitting Results on Captured and MuSHRoom Scenes
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Figure 9. Validation SR for overfitted policies on respective
scenes: Polices are not pre-trained on HM3D/HSSD.

We further evaluate these overfitted policies in the real-
world lounge scene using POLYCAM and DN meshes.
Surprisingly, the overfitted policy trained on the POLYCAM
mesh achieves a 50% success rate in real-world evaluations.
In contrast, the policy trained on the DN mesh achieves
only 10% success. This result suggests that our mesh-based
training approach can yield non-zero real-world perfor-
mance, even without large-scale pre-training. We attribute
the performance gap between POLYCAM and DN-trained
policies to differences in visual fidelity—POLYCAM meshes
preserve more visual detail by directly utilizing original im-
ages to reconstruct the scene, whereas DN meshes are based
on GS which use the learned colors for the 3D Gaussians.

5.2. How is the scale and validation PSNR of the
scene related to the final performance?

Fig. 10 illustrates the correlation between HM3D zero-shot
validation success rates on DN meshes and two key
factors: the Peak Signal-to-Noise Ratio (PSNR) of the
corresponding 3D Gaussian Splats (GS) and the scale of the
scene, measured as the average shortest distance between
start-goal locations in validation episodes. We observe a
negative correlation between success rate (SR) and average
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Figure 10. HM3D zero-shot validation success rates on DN
meshes vs. validation GS PSNRs vs. average shortest dis-
tances of validation episodes. The zero-shot SR is inversely cor-
related with the scale of the scene, while directly correlated with
val. PSNR on the trained GS.

shortest distance—indicating that as the scale of the scene
increases, the zero-shot success rate declines. Conversely,
a positive correlation is seen between SR and PSNR, where
higher validation PSNR values correspond to improved
success rates. Notably, different trend lines emerge for
MuSHRoom captures and our own Captured scenes.
MuSHRoom captures generally exhibit higher validation
PSNRs, likely due to the use of a stabilized gimbal during
data collection. Future work will further investigate the
impact of capture stability on policy performance.

5.3. Does continuous training on large-scale
datasets improve zero-shot performance?

—

= 100 Polycam
pvt DN-Mesh
x
»n 8 HM3D
L 60
©
E’:’. 40
]
5 20
N

0

0 1 2 3 4 5 6

Steps 1e8

Figure 11. Average zero-shot success rates on respective vali-
dation sets over different stages of pre-training on HM3D.

Fig. 11 presents average zero-shot success rates across
HM3D validation set, POLYCAM meshes, and DN meshes
at various stages of HM3D policy pre-training. This
analysis aims to determine whether continuous perfor-
mance improvements on HM3D validation scenes translate
to improved zero-shot performance on our Captured
scenes. We observe that while performance initially in-
creases, it begins to deteriorate or plateau at approximately
400M steps, despite continued improvements on HM3D
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Figure 12. Average zero-shot success rates on respective vali-
dation sets over different stages of pre-training on HSSD.

validation scenes.

Fig. 12 shows a similar experiment conducted using the
HSSD dataset. Up to 300M steps, improvements in HSSD
validation performance correspond to slight improvements
in zero-shot performance on our Captured scenes. How-
ever, performance plateaus for Captured, showing no
further gains despite continued improvement on HSSD val-
idation scenes. For HM3D pre-training, POLYCAM meshes
outperform DN meshes in success rates, while for HSSD,
the trend reverses slightly, highlighting the impact of pre-
training dataset characteristics on zero-shot generalization.

6. Conclusion

In this work, we introduced a comprehensive pipeline for
bridging the gap between real-world and simulated envi-
ronments in training embodied agents using 3D Gaussian
Splats (GS) and Polycam. By leveraging the MuSHRoom
dataset and custom iPhone-captured scenes, we demon-
strated an efficient and scalable approach to policy personal-
ization, leveraging 3D scene reconstruction from low-effort
collects, enabling high-quality training for the ImageNav
task. Our pipeline facilitates accessible and replicable scene
collection without requiring specialized hardware or signif-
icant costs, making it a practical solution for large-scale
embodied Al research. We evaluated overfitted, zero-shot,
and fine-tuned policies, showing that fine-tuning pre-trained
policies on real-world scene reconstructions improves sim-
to-real transfer. We also analyzed the differences between
GS-generated DN meshes and POLYCAM meshes, finding
that POLYCAM more closely resemble real-world scenes.

This work lays the foundation for seamlessly integrat-
ing real-world scene captures into simulation, expanding
the applicability of embodied Al systems. Another promis-
ing avenue is integrating GS directly into training, replacing
visual observations and goal images to enhance learning ef-
ficiency. Furthermore, we aim to extend the use of Gaussian
Splats to more complex embodied Al tasks, such as rear-
rangement and mobile manipulation, broadening its impact
across diverse real-world applications.
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A. Real-world Deployment on Stretch Robot

Observations ’

Ubuntu Machine + ROS Noetic Flask Inference Server

~
- Wired )
e  Connection Policy Input
v Policy Inference

ap

Stretch Robot

Slurm Cluster with Ad0s

Figure 13. Framework for real-world evaluation on a Stretch robot.

Since the stretch robot is not equipped with GPUs, we
develop a framework for deploying a policy on a remote
cluster, and performing inference using POST requests
from the robot. An overview of this arrangement is shown
in Fig. 13. Specifically, we create a Flask server that runs
on a remote compute node, port-forwarded to an Ubuntu
20.04 machine with ROS noetic installed. The same ma-
chine is connected to a Stretch robot via ethernet connec-
tion. We use the home-robot [43] repository as frame-
work to convert discretized actions from the policy into con-
tinuous space using the “StretchNavigationClient”. A script
running on the machine consumes the ROS topics for image
observations from the robot, and passes this along with the
goal image to the policy and receives the next action based
on these observations.

For evaluation in real-world, we use random start-and-
goal locations, place the Stretch robot at the goal location,
and capture a goal image. Then, we mark these locations
using colored masking tape on the floor. The policy is de-
ployed with the goal image passed to the agent during the
episode as above, keeping the start location and pose sim-
ilar for each evaluation. The episode stops when the agent
outputs a STOP action or the maximum number of steps
(100 in our case) are reached. Finally, the distance of the
base is measured from the the goal location using a measur-
ing tape, and the episode is marked successful if the agent
reaches within 1m of the goal location before stopping. The
goal images used are shown in Fig. 15.

Figure 15. Goal images used in 1ounge scene

B. Generating ImageNav episodes

To generate ImageNav episodes, we build upon Habi-
tat’s [39, 44] scripts for PointNav generation. During train-
ing, the PointNav goal locations are paired with an Image-
goal sensor to retrieve the image corresponding to the goal
location prior to the start of the episode.

Habitat [39, 44] uses navmesh islands to define navigable
areas in simulation. For episode generation, we leverage the
stretch robot parameters [46] to compute the navmeshes.

Valid start and goal locations are sampled during episode
generation, following the approach in [46]. The validity
checks ensure that the goal is reachable, the distance from
the start location to the goal is non-zero, and the navmesh
island radius exceeds 2m, thereby avoiding navigation on
objects like beds or tables.



C. Examples for DN and POLYCAM rendering

Fig. 16 and Fig. 17 shows the rendering differences for the
images in Habitat-Sim [39] for DN and POLYCAM meshes.
DN meshes have diffused and darker colors, and some holes
for regions where capture was not sufficient. In contrast,
polycam produces a smoother and more realistic mesh.

Figure 16. DN (conf_b)

Figure 17. POLYCAM (conf_b)

D. Expanded Related Work

D.1. 3D Scene and Mesh Reconstruction

Recent advancements in 3D scene reconstruction have led
to the development of several notable approaches. Neural
Radiance Fields (NeRF) [35] and subsequent methods [4,
19, 36] have focused on training and improving neural scene
representation techniques. The foundational 3D Gaussian
Splatting (GS) method [24] has inspired a variety of exten-
sions. DN-Splatter [49] improves reconstruction quality by
incorporating depth and normal regularization with monoc-
ular networks. Gaussian Surfels [12] introduces a technique
for flattening 3D Gaussians into 2D surfels, resulting in en-
hanced mesh reconstruction. GS2Mesh [51] incorporates
real-world knowledge through stereo-matching to generate
smoother meshes. SuGaR [15] proposes a fast mesh extrac-
tion method using surface-aligned Gaussian splatting.

D.2. 3D Scene Representation in Robotics

Several studies have explored the use of neural scene
representations [33, 54] and 3D Gaussian Splatting (GS)
for robotic tasks in simulation. SplatGym [40] presents a
neural simulator for training robotic control policies using
Gaussian Splatting. BEINGS [34] leverages 3D Gaussian
Splatting as a scene prior to predict future observations
and refine navigation strategies. A concurrent work,
SOUS-VIDE [30], uses a simple drone dynamics model
within a high visual fidelity 3DGS reconstruction for
training an end-to-end policy and show sim-to-real transfer.

We note that our work is a complementary effort focused
on image-goal navigation, out-of-domain generalization,
the effects of reconstruction quality and training strategies.

Recent research has also emphasized the application of
neural scene representations for real-world robotic appli-
cations [7, 10, 22]. Object-Aware Gaussian Splatting [28]
proposes semantic and dynamic 3D representations for
robotic manipulation. RL-GSBridge [52] introduces a
mesh-based 3D Gaussian Splatting method for zero-shot
sim-to-real transfer in manipulation tasks. LEGS [58]
and POGS [59] distil semantic features from foundation
models into GS to enable downstream navigation and
manipulation applications. While these studies investigate
Gaussian Splatting for sim-to-real manipulation, our work
focuses on using it for personalized sim-to-real Image-Goal
Navigation. For additional methods utilizing Neural Fields
and Gaussian Splatting in robotics, we refer to the compre-
hensive surveys [20, 60] which examines the applications
of Neural fields in robotics.

E. Mesh Processing using Blender

Figure 18. Converting the .ply files generated by DN-
Splatter [49] to . glb files using Blender. Transform +Y Up is
kept unchecked following conventions of Habitat-Sim [39].

DN-Splatter [49] gives us Poisson reconstructed meshes
from the Gaussian Splats in .ply format. In order to load
these meshes in Habitat-Sim [39], we need to convert these
to .glb format. In order to do so, we import the . ply in
Blender and then export them as . g1b files while ensuring
that +Y Up transform is unchecked, following the conven-
tions used in Habitat-Sim.

F. Episode Statistics for Generated Datasets on
Captured Scenes

Tab. 2 presents the shortest path lengths (Min, Max, and
Avg.) for both training and validation episodes across the
different types of GS-based scenes used in our work.
Notably, the scale of the Captured scenes is compara-
ble to that of the MuSHRoom [42] scenes, suggesting a sim-
ilar range of complexity in terms of environment size and



Scene Type Scene Train Val
Min | Max | Avg. | Min | Max | Avg.
activity 7 127 | 59.623 17 120 | 59.82
MuSHRoom sauna 5 60 34.615 7 57 34.31
honka 6 61 33.563 16 63 34.16
lounge 8 99 | 51.431 18 96 55.3
Captured classroom 7 78 35.161 11 70 32.39
conf_ b 5 42 | 20.766 5 34 19.77
conf_a 5 46 19.996 6 43 19.92

Table 2. Shortest path lengths for episodes across MuSHRoom [42] and Captured scenes.

structure. In future, we will attempt to collect apartment-
scale scenes which require considerably larger number of
steps (~200).

Within the Captured scenes, there is variation in scale,
with certain scenes such as lounge having much larger
path lengths compared to others like conf_b or conf_a,
which are conference rooms.

Both GS training and agent training is likely to be in-
fluenced by this scale variability, as the agent must learn to
navigate environments that may range from relatively sim-
ple, smaller spaces to more expansive, complex ones.

G. Depth and Normal Encoder Selection for
DN-Splatter

Since we do not have ground-truth meshes for our
Captured scenes, we use all 10 MuSHRoom [42] scenes
as a proxy for evaluation of different depth and normal en-
coders towards 3D scene reconstruction.

We evaluate various depth encoders using monocular
depth predictions and assess their reconstruction perfor-
mance based on several metrics following MuSHRoom [42]:
accuracy (Acc), completion (Comp), Chamfer distance (C-
L1), normal consistency (NC), and F-score. The depth scale
for each encoder is defined by the ground truth (GT) from
an iPhone, with a transform (scale and bias) learned via gra-
dient optimization to convert the monocular depths from the
encoders into the appropriate scale.

As shown in Tab. 3, the GT depth from iPhone pro-
vides the best performance across most metrics, achieving
the highest normal consistency (0.815) and F-score (0.748).
Among the tested depth encoders, GT consistently outper-
forms others, confirming its robustness for reconstruction
tasks. Since the GT depth encoder performed the best over-
all, we selected the same for our subsequent evaluations
for normal encoders. As shown in Tab. 4, the Metric3D-
v2 [16] encoder achieves the highest F-score (0.752) when
used with GT depth, outperforming other normal encoders
- DSINE [3] and Omnidata [14]. Therefore, for 3D recon-
struction of our Captured scenes, we use the GT-depth
and Metric3D-v2 normals.

H. Agent, Training, and Evaluation Details

Agent: We employ the Hello Robot Stretch robot embodi-
ment as our agent, following the setup in [46]. In the Habitat
Simulator, the agent is modeled as a cylinder with a height
of 1.41m and a radius of 0.3m. The RGB camera sensor is
positioned at a height of 1.31m from the ground and is ver-
tically aligned. The sensor outputs images with a resolution
of 640x480 (HxW) and a horizontal field of view of 42°.
The goal sensor is configured with identical parameters to
the RGB sensor. During training, the agent’s rotation at the
goal location is randomly sampled.

Training and Evaluation: We train our agents using
DD-PPO [50] with ImageNav reward, with each environ-
ment generating 64 frames per rollout. The training pro-
cess includes 2 PPO [45] epochs, each consisting of 2
mini-batches. Following [46], we use the AdamW opti-
mizer [29] with a weight decay of 10~® and a learning
rate of 2.5 x 10~%, unless stated otherwise. The visual en-
coder is kept unfrozen during training and data augmenta-
tion is applied. The visual encoder learning rate is set to
1.5 x 10~ for HM3D and other settings, and 1.5 x 1075
for HSSD. The goal and observation visual encoders share
the same weights. The number of environments per GPU is
set to 10 for HM3D/HSSD, and 8 for Captured scenes
due to computational constraints. Policies are trained to
convergence across all training setups and datasets. Check-
points are saved approximately every ~ 3M steps and eval-
uated on the validation sets of the corresponding datasets.
The best checkpoint is selected based on the highest suc-
cess rate (SR) achieved on the validation set. For train-
ing, we utilized 16 NVIDIA A40 GPUs per policy per
dataset. For simulation-based evaluations, we utilize a
single A40 GPU with one environment for Captured
scenes and MuSHRoom scenes, and 20 environments for
HM3D/HSSD. For real-world evaluations, we employ a sin-
gle environment and a single A40 GPU. For details on real-
world setup, please refer to Appendix A.

Visual Encoder: The observation and goal images
are resized to 160x120 before being input into the
VC-1-Base visual encoder [32]. Patch embeddings are



Depth Type Accl | Comp | | C-L1| | NC1 | F-score 1
DepthAnything-v2 (Indoor) [57] | 0.054 0.090 0.072 | 0.800 0.688
GT 0.047 0.090 0.068 | 0.815 0.748
Metric3D-v2 [16] 0.052 0.089 0.071 | 0.804 0.700
UniDepth-v2 [37] 0.049 0.087 0.068 | 0.813 0.719
ZoeDepth [5] 0.061 0.091 0.076 | 0.780 0.621

Table 3. Average metrics for MuSHRoom Scenes computed against Faro-Scanner ground-truths for different depth types. The normal
encoder used is Omnidata [14]. Ground truth from iPhone leads to the highest F-scores.

Normal Type Depth Type | Acc) | Comp | | C-L1| | NC1 | F-score 1
DSINE [3] GT 0.046 | 0.090 0.068 | 0.815 0.750
Metric3D-v2 [16] GT 0.046 | 0.090 0.068 | 0.818 0.752
Omnidata [14] GT 0.047 | 0.090 0.068 | 0.815 0.748

Table 4. Average metrics for MuSHRoom scenes computed against Faro-Scanner ground truths for different normal encoders. The depth
used is the ground truth from iPhone. Metric3D-v2 outperforms other normal encoders.

processed through a “compression layer” [56], which com-
prises of a 2D convolution followed by group normaliza-
tion, to generate the final embeddings.

Policy: The policy is implemented as a 2-layer LSTM
that takes as input the previous action embedding, visual
observation embeddings, and goal image embeddings fol-
lowing [46]. It outputs one of the following discrete actions:
MOVE_FORWARD, TURN_LEFT, TURN_RIGHT, or STOP.

Reward Function: The reward function is adapted from
[46, 56], using the same hyperparameters as in [46]: success
weight ¢ = 5.0, angle success weight ¢, = 5.0, goal radius
rq = 1.0, angle threshold 6, = 25°, and slack penalty A =
0.01. The collision penalty is defined as c.,;; = 0.03.

The full reward function is detailed in Eq. (1).

re = ¢s X ([d¢ < 1g] A [ay = STOP])
+¢q X ([0 < b4] A [ay = STOP])

+ (9}_1 - 9})
+(di—1 —di) —
— Ceonl X [collision = true] (1)

I. Real-world metrics for successful episodes

Tab. 5 shows the distance-to-goal (in centimeters) and
the number of steps taken on average for the successful
episodes for each type of policy we deploy in the real world.
We note that some of these average values may not include
enough samples to be statistically significant. Therefore,
we refrain from making conclusions about which policy is
more efficient based on these, and provide the values for
book-keeping purposes.

Policy D2G (cm) | #Steps
HM3D 4420 | 45.60
HM3D-FT-Poly 4829 | 58.14
HM3D-FT-DN 29.64 | 52.86
HSSD 98.50 | 38.00
HSSD-FT-Poly 37.10 | 54.00
HSSD-FT-DN 40.87 36.25

Table 5. Average distance to goal and number of steps in the real-
world 1ounge scene for successful episodes for each policy.

J. Simulation results on additional real-world
scenes

In Tab. 6, we present additional results for HM3D zero-shot
and fine-tuned policies across several scenes. Five of these
are from the MuSHRoom dataset—koivu, classrm?2,
kokko, coffeerm, and vr_rm. We also include one real-
world scene, conf_c, that we captured using our methodol-
ogy. Fine-tuning consistently improves performance across
all mesh types. The improvements are modest in smaller
scenes (e.g., koivu, cof feerm), where the zero-shot pol-
icy already performs well. In contrast, larger scenes (e.g.,
conf_c, vr_rm) benefit significantly from fine-tuning.

We also visualize the relationship between HM3D zero-
shot success rate, validation PSNR, and average shortest
path distance in Fig. 19. We observe a consistent trend with
the previous results: the zero-shot success rate decreases as
the size of the scene increases, and improves as the valida-
tion PSNR of the trained Gaussian Splat (GS) increases.

An exception is vr_rm, which appears as an outlier
in the MuSHRoom dataset and warrants further investiga-
tion. Aside from this case, the remaining scenes from
MuSHRoom generally show improved zero-shot perfor-
mance as PSNR increases.



Scene Mesh | HM3D-ZS | HM3D-FT
koivu DN 0.87 0.98
classrm2 | DN 0.61 0.97
kokko DN 0.66 0.99
coffeerm | DN 0.90 1.00
vr_rm DN 0.39 0.99
conf_c DN 0.16 0.84

Poly 0.50 0.98

Table 6. Validation success rates on additional scenes from

MuSHRoom and Captured datasets.
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in Fig. 6. Fine-tuning requires significantly fewer steps be-
cause the pre-trained policy already captures general navi-
gation behaviors. We also deliberately limit the number of
fine-tuning steps to preserve the policy’s ability to general-
ize to real-world environments—Ileveraging knowledge ac-
quired during large-scale pre-training across diverse scenes.

This pre-training not only enables better generalization
in the real world (see Fig. 8) but also substantially reduces
overall training time, which is critical for rapid deployment.

In contrast, our overfitting experiments involve training
policies exclusively on simulated versions of specific real
scenes. These policies typically achieve 80-90% success
within 20-30M steps, but their performance is limited to
the training environment. For completeness, we early stop
around 100M steps, although most gains saturate earlier.

Tab. 8 reports the best validation success rates of over-
fitted policies at 20M steps. Despite strong performance
in simulation, these policies fail to generalize to real-world
settings due to factors such as lighting variations, sensor
noise, and actuation inaccuracies.

Figure 19. HM3D zero-shot validation success rates on DN
meshes vs. validation GS PSNRs vs. average shortest distances
of validation episodes. The zero-shot SR is inversely correlated
with scene scale and directly correlated with GS validation PSNR.
vr_rmis an outlier in the MuSHRoom dataset and requires further
analysis.

K. Failure modes for HM3D zero-shot on
lounge scene in simulation

To assess the role of visual fidelity, we analyze zero-shot
HM3D policy trajectories and identified failure modes in
the 1ounge scene using both DN and POLYCAM meshes
(Tab. 7) in simulation. We found significant increase in
“Maximum Steps Reached” failures with the DN mesh, in-
dicating low visual fidelity prevents the policy from match-
ing goal images— a key limitation of the pre-trained policy.

Termination Reason PoLycaMm | DN
Target Reached (success) 74 55
Early Stop (Goal Not Visible) 3 5
Early Stop (Goal Visible) 11 16
Early Stop (Similar Goal Visible) 5
Maximum Steps Reached 8 19

Table 7. Sim failure analysis for HM3D-ZS on lounge.

L. Overfitting vs. Fine-Tuning

In this section, we clarify why the overfitting results shown
in Fig. 9 may appear stronger than the fine-tuning results

Scene DN val. SR. | Poly val. SR.
lounge 0.74 0.74
classrm 1.00 0.85
conf_a 0.99 1.00
conf b 1.00 1.00
honka 1.00 —
sauna 0.99 —
activity 0.79 —

Table 8. Overfitted validation success rates after 20M steps.
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