EmbodiedSplat: Personalized Real-to-Sim-to-Real Navigation with Gaussian
Splats from a Mobile Device

Supplementary Material

A. Real-world Deployment on Stretch Robot

Observations ’

Ubuntu Machine + ROS Noetic Flask Inference Server

~
- Wired)
e Connection Policy Input
v Policy Inference

ap

Stretch Robot

Slurm Cluster with Ad0s

Figure 13. Framework for real-world evaluation on a Stretch robot.

Since the stretch robot is not equipped with GPUs, we
develop a framework for deploying a policy on a remote
cluster, and performing inference using POST requests
from the robot. An overview of this arrangement is shown
in Fig. 13. Specifically, we create a Flask server that runs
on a remote compute node, port-forwarded to an Ubuntu
20.04 machine with ROS noetic installed. The same ma-
chine is connected to a Stretch robot via ethernet connec-
tion. We use the home-robot [43] repository as frame-
work to convert discretized actions from the policy into con-
tinuous space using the “StretchNavigationClient”. A script
running on the machine consumes the ROS topics for image
observations from the robot, and passes this along with the
goal image to the policy and receives the next action based
on these observations.

For evaluation in real-world, we use random start-and-
goal locations, place the Stretch robot at the goal location,
and capture a goal image. Then, we mark these locations
using colored masking tape on the floor. The policy is de-
ployed with the goal image passed to the agent during the
episode as above, keeping the start location and pose sim-
ilar for each evaluation. The episode stops when the agent
outputs a STOP action or the maximum number of steps
(100 in our case) are reached. Finally, the distance of the
base is measured from the the goal location using a measur-
ing tape, and the episode is marked successful if the agent
reaches within 1m of the goal location before stopping. The
goal images used are shown in Fig. 15.

Figure 15. Goal images used in 1ounge scene

B. Generating ImageNav episodes

To generate ImageNav episodes, we build upon Habi-
tat’s [39, 44] scripts for PointNav generation. During train-
ing, the PointNav goal locations are paired with an Image-
goal sensor to retrieve the image corresponding to the goal
location prior to the start of the episode.

Habitat [39, 44] uses navmesh islands to define navigable
areas in simulation. For episode generation, we leverage the
stretch robot parameters [46] to compute the navmeshes.

Valid start and goal locations are sampled during episode
generation, following the approach in [46]. The validity
checks ensure that the goal is reachable, the distance from
the start location to the goal is non-zero, and the navmesh
island radius exceeds 2m, thereby avoiding navigation on
objects like beds or tables.

C. Examples for DN and POLYCAM rendering

Fig. 16 and Fig. 17 shows the rendering differences for the
images in Habitat-Sim [39] for DN and POLYCAM meshes.
DN meshes have diffused and darker colors, and some holes
for regions where capture was not sufficient. In contrast,
polycam produces a smoother and more realistic mesh.

Figure 16. DN (conf_b)

Figure 17. POLYCAM (conf_b)

D. Expanded Related Work

D.1. 3D Scene and Mesh Reconstruction

Recent advancements in 3D scene reconstruction have led
to the development of several notable approaches. Neural
Radiance Fields (NeRF) [35] and subsequent methods [4,
19, 36] have focused on training and improving neural scene
representation techniques. The foundational 3D Gaussian
Splatting (GS) method [24] has inspired a variety of exten-
sions. DN-Splatter [49] improves reconstruction quality by
incorporating depth and normal regularization with monoc-
ular networks. Gaussian Surfels [12] introduces a technique
for flattening 3D Gaussians into 2D surfels, resulting in en-
hanced mesh reconstruction. GS2Mesh [51] incorporates
real-world knowledge through stereo-matching to generate
smoother meshes. SuGaR [15] proposes a fast mesh extrac-
tion method using surface-aligned Gaussian splatting.

D.2. 3D Scene Representation in Robotics

Several studies have explored the use of neural scene
representations [33, 54] and 3D Gaussian Splatting (GS)
for robotic tasks in simulation. SplatGym [40] presents a
neural simulator for training robotic control policies using
Gaussian Splatting. BEINGS [34] leverages 3D Gaussian
Splatting as a scene prior to predict future observations
and refine navigation strategies. A concurrent work,
SOUS-VIDE [30], uses a simple drone dynamics model
within a high visual fidelity 3DGS reconstruction for
training an end-to-end policy and show sim-to-real transfer.

We note that our work is a complementary effort focused
on image-goal navigation, out-of-domain generalization,
the effects of reconstruction quality and training strategies.

Recent research has also emphasized the application of
neural scene representations for real-world robotic appli-
cations [7, 10, 22]. Object-Aware Gaussian Splatting [28]
proposes semantic and dynamic 3D representations for
robotic manipulation. RL-GSBridge [52] introduces a
mesh-based 3D Gaussian Splatting method for zero-shot
sim-to-real transfer in manipulation tasks. LEGS [58]
and POGS [59] distil semantic features from foundation
models into GS to enable downstream navigation and
manipulation applications. While these studies investigate
Gaussian Splatting for sim-to-real manipulation, our work
focuses on using it for personalized sim-to-real Image-Goal
Navigation. For additional methods utilizing Neural Fields
and Gaussian Splatting in robotics, we refer to the compre-
hensive surveys [20, 60] which examines the applications
of Neural fields in robotics.

E. Mesh Processing using Blender

Figure 18. Converting the .ply files generated by DN-
Splatter [49] to . glb files using Blender. Transform +Y Up is
kept unchecked following conventions of Habitat-Sim [39].

DN-Splatter [49] gives us Poisson reconstructed meshes
from the Gaussian Splats in .ply format. In order to load
these meshes in Habitat-Sim [39], we need to convert these
to .glb format. In order to do so, we import the . ply in
Blender and then export them as . g1b files while ensuring
that +Y Up transform is unchecked, following the conven-
tions used in Habitat-Sim.

F. Episode Statistics for Generated Datasets on
Captured Scenes

Tab. 2 presents the shortest path lengths (Min, Max, and
Avg.) for both training and validation episodes across the
different types of GS-based scenes used in our work.
Notably, the scale of the Captured scenes is compara-
ble to that of the MuSHRoom [42] scenes, suggesting a sim-
ilar range of complexity in terms of environment size and

Scene Type Scene Train Val
Min | Max | Avg. | Min | Max | Avg.
activity 7 127 | 59.623 17 120 | 59.82
MuSHRoom sauna 5 60 34.615 7 57 34.31
honka 6 61 33.563 16 63 34.16
lounge 8 99 | 51.431 18 96 55.3
Captured classroom 7 78 35.161 11 70 32.39
conf_ b 5 42 | 20.766 5 34 19.77
conf_a 5 46 19.996 6 43 19.92

Table 2. Shortest path lengths for episodes across MuSHRoom [42] and Captured scenes.

structure. In future, we will attempt to collect apartment-
scale scenes which require considerably larger number of
steps (~200).

Within the Captured scenes, there is variation in scale,
with certain scenes such as lounge having much larger
path lengths compared to others like conf_b or conf_a,
which are conference rooms.

Both GS training and agent training is likely to be in-
fluenced by this scale variability, as the agent must learn to
navigate environments that may range from relatively sim-
ple, smaller spaces to more expansive, complex ones.

G. Depth and Normal Encoder Selection for
DN-Splatter

Since we do not have ground-truth meshes for our
Captured scenes, we use all 10 MuSHRoom [42] scenes
as a proxy for evaluation of different depth and normal en-
coders towards 3D scene reconstruction.

We evaluate various depth encoders using monocular
depth predictions and assess their reconstruction perfor-
mance based on several metrics following MuSHRoom [42]:
accuracy (Acc), completion (Comp), Chamfer distance (C-
L1), normal consistency (NC), and F-score. The depth scale
for each encoder is defined by the ground truth (GT) from
an iPhone, with a transform (scale and bias) learned via gra-
dient optimization to convert the monocular depths from the
encoders into the appropriate scale.

As shown in Tab. 3, the GT depth from iPhone pro-
vides the best performance across most metrics, achieving
the highest normal consistency (0.815) and F-score (0.748).
Among the tested depth encoders, GT consistently outper-
forms others, confirming its robustness for reconstruction
tasks. Since the GT depth encoder performed the best over-
all, we selected the same for our subsequent evaluations
for normal encoders. As shown in Tab. 4, the Metric3D-
v2 [16] encoder achieves the highest F-score (0.752) when
used with GT depth, outperforming other normal encoders
- DSINE [3] and Omnidata [14]. Therefore, for 3D recon-
struction of our Captured scenes, we use the GT-depth
and Metric3D-v2 normals.

H. Agent, Training, and Evaluation Details

Agent: We employ the Hello Robot Stretch robot embodi-
ment as our agent, following the setup in [46]. In the Habitat
Simulator, the agent is modeled as a cylinder with a height
of 1.41m and a radius of 0.3m. The RGB camera sensor is
positioned at a height of 1.31m from the ground and is ver-
tically aligned. The sensor outputs images with a resolution
of 640x480 (HxW) and a horizontal field of view of 42°.
The goal sensor is configured with identical parameters to
the RGB sensor. During training, the agent’s rotation at the
goal location is randomly sampled.

Training and Evaluation: We train our agents using
DD-PPO [50] with ImageNav reward, with each environ-
ment generating 64 frames per rollout. The training pro-
cess includes 2 PPO [45] epochs, each consisting of 2
mini-batches. Following [46], we use the AdamW opti-
mizer [29] with a weight decay of 10~® and a learning
rate of 2.5 x 10~%, unless stated otherwise. The visual en-
coder is kept unfrozen during training and data augmenta-
tion is applied. The visual encoder learning rate is set to
1.5 x 10~ for HM3D and other settings, and 1.5 x 1075
for HSSD. The goal and observation visual encoders share
the same weights. The number of environments per GPU is
set to 10 for HM3D/HSSD, and 8 for Captured scenes
due to computational constraints. Policies are trained to
convergence across all training setups and datasets. Check-
points are saved approximately every ~ 3M steps and eval-
uated on the validation sets of the corresponding datasets.
The best checkpoint is selected based on the highest suc-
cess rate (SR) achieved on the validation set. For train-
ing, we utilized 16 NVIDIA A40 GPUs per policy per
dataset. For simulation-based evaluations, we utilize a
single A40 GPU with one environment for Captured
scenes and MuSHRoom scenes, and 20 environments for
HM3D/HSSD. For real-world evaluations, we employ a sin-
gle environment and a single A40 GPU. For details on real-
world setup, please refer to Appendix A.

Visual Encoder: The observation and goal images
are resized to 160x120 before being input into the
VC-1-Base visual encoder [32]. Patch embeddings are

Depth Type Accl | Comp | | C-L1| | NC1 | F-score 1
DepthAnything-v2 (Indoor) [57] | 0.054 0.090 0.072 | 0.800 0.688
GT 0.047 0.090 0.068 | 0.815 0.748
Metric3D-v2 [16] 0.052 0.089 0.071 | 0.804 0.700
UniDepth-v2 [37] 0.049 0.087 0.068 | 0.813 0.719
ZoeDepth [5] 0.061 0.091 0.076 | 0.780 0.621

Table 3. Average metrics for MuSHRoom Scenes computed against Faro-Scanner ground-truths for different depth types. The normal
encoder used is Omnidata [14]. Ground truth from iPhone leads to the highest F-scores.

Normal Type Depth Type | Acc) | Comp | | C-L1| | NC1 | F-score 1
DSINE [3] GT 0.046 | 0.090 0.068 | 0.815 0.750
Metric3D-v2 [16] GT 0.046 | 0.090 0.068 | 0.818 0.752
Omnidata [14] GT 0.047 | 0.090 0.068 | 0.815 0.748

Table 4. Average metrics for MuSHRoom scenes computed against Faro-Scanner ground truths for different normal encoders. The depth
used is the ground truth from iPhone. Metric3D-v2 outperforms other normal encoders.

processed through a “compression layer” [56], which com-
prises of a 2D convolution followed by group normaliza-
tion, to generate the final embeddings.

Policy: The policy is implemented as a 2-layer LSTM
that takes as input the previous action embedding, visual
observation embeddings, and goal image embeddings fol-
lowing [46]. It outputs one of the following discrete actions:
MOVE_FORWARD, TURN_LEFT, TURN_RIGHT, or STOP.

Reward Function: The reward function is adapted from
[46, 56], using the same hyperparameters as in [46]: success
weight ¢ = 5.0, angle success weight ¢, = 5.0, goal radius
rq = 1.0, angle threshold 6, = 25°, and slack penalty A =
0.01. The collision penalty is defined as c.,;; = 0.03.

The full reward function is detailed in Eq. (1).

re = ¢s X ([d¢ < 1g] A [ay = STOP])
+¢q X ([0 < b4] A [ay = STOP])

+ (9}_1 - 9})
+(di—1 —di) —
— Ceonl X [collision = true] (1)

I. Real-world metrics for successful episodes

Tab. 5 shows the distance-to-goal (in centimeters) and
the number of steps taken on average for the successful
episodes for each type of policy we deploy in the real world.
We note that some of these average values may not include
enough samples to be statistically significant. Therefore,
we refrain from making conclusions about which policy is
more efficient based on these, and provide the values for
book-keeping purposes.

Policy D2G (cm) | #Steps
HM3D 4420 | 45.60
HM3D-FT-Poly 4829 | 58.14
HM3D-FT-DN 29.64 | 52.86
HSSD 98.50 | 38.00
HSSD-FT-Poly 37.10 | 54.00
HSSD-FT-DN 40.87 36.25

Table 5. Average distance to goal and number of steps in the real-
world 1ounge scene for successful episodes for each policy.

J. Simulation results on additional real-world
scenes

In Tab. 6, we present additional results for HM3D zero-shot
and fine-tuned policies across several scenes. Five of these
are from the MuSHRoom dataset—koivu, classrm?2,
kokko, coffeerm, and vr_rm. We also include one real-
world scene, conf_c, that we captured using our methodol-
ogy. Fine-tuning consistently improves performance across
all mesh types. The improvements are modest in smaller
scenes (e.g., koivu, cof feerm), where the zero-shot pol-
icy already performs well. In contrast, larger scenes (e.g.,
conf_c, vr_rm) benefit significantly from fine-tuning.

We also visualize the relationship between HM3D zero-
shot success rate, validation PSNR, and average shortest
path distance in Fig. 19. We observe a consistent trend with
the previous results: the zero-shot success rate decreases as
the size of the scene increases, and improves as the valida-
tion PSNR of the trained Gaussian Splat (GS) increases.

An exception is vr_rm, which appears as an outlier
in the MuSHRoom dataset and warrants further investiga-
tion. Aside from this case, the remaining scenes from
MuSHRoom generally show improved zero-shot perfor-
mance as PSNR increases.

Scene Mesh | HM3D-ZS | HM3D-FT
koivu DN 0.87 0.98
classrm2 | DN 0.61 0.97
kokko DN 0.66 0.99
coffeerm | DN 0.90 1.00
vr_rm DN 0.39 0.99
conf_c DN 0.16 0.84

Poly 0.50 0.98

Table 6. Validation success rates on additional scenes from

MuSHRoom and Captured datasets.

100

90

804

Val SR (%)

50

40

30—

704

60 1

Val SR vs Shortest Distance
100

Val SR vs Val PSN

R

»

¢

90 4

80 1

L AR

7041

60

50 1

40

¢

Labels
classroom
lounge
conf_a
conf_b
conf_c
activity
sauna
honka
koivu
classrm2
kokko
coffeerm
vr_room
Captured trend
Mushroom trend

oo ad]

20

30

40

50

— 30
60

Shortest Dist. (steps)

18

20

22

24

26

Val PSNR (dB)

in Fig. 6. Fine-tuning requires significantly fewer steps be-
cause the pre-trained policy already captures general navi-
gation behaviors. We also deliberately limit the number of
fine-tuning steps to preserve the policy’s ability to general-
ize to real-world environments—Ileveraging knowledge ac-
quired during large-scale pre-training across diverse scenes.

This pre-training not only enables better generalization
in the real world (see Fig. 8) but also substantially reduces
overall training time, which is critical for rapid deployment.

In contrast, our overfitting experiments involve training
policies exclusively on simulated versions of specific real
scenes. These policies typically achieve 80-90% success
within 20-30M steps, but their performance is limited to
the training environment. For completeness, we early stop
around 100M steps, although most gains saturate earlier.

Tab. 8 reports the best validation success rates of over-
fitted policies at 20M steps. Despite strong performance
in simulation, these policies fail to generalize to real-world
settings due to factors such as lighting variations, sensor
noise, and actuation inaccuracies.

Figure 19. HM3D zero-shot validation success rates on DN
meshes vs. validation GS PSNRs vs. average shortest distances
of validation episodes. The zero-shot SR is inversely correlated
with scene scale and directly correlated with GS validation PSNR.
vr_rmis an outlier in the MuSHRoom dataset and requires further
analysis.

K. Failure modes for HM3D zero-shot on
lounge scene in simulation

To assess the role of visual fidelity, we analyze zero-shot
HM3D policy trajectories and identified failure modes in
the 1ounge scene using both DN and POLYCAM meshes
(Tab. 7) in simulation. We found significant increase in
“Maximum Steps Reached” failures with the DN mesh, in-
dicating low visual fidelity prevents the policy from match-
ing goal images— a key limitation of the pre-trained policy.

Termination Reason PoLycaMm | DN
Target Reached (success) 74 55
Early Stop (Goal Not Visible) 3 5
Early Stop (Goal Visible) 11 16
Early Stop (Similar Goal Visible) 5
Maximum Steps Reached 8 19

Table 7. Sim failure analysis for HM3D-ZS on lounge.

L. Overfitting vs. Fine-Tuning

In this section, we clarify why the overfitting results shown
in Fig. 9 may appear stronger than the fine-tuning results

Scene DN val. SR. | Poly val. SR.
lounge 0.74 0.74
classrm 1.00 0.85
conf_a 0.99 1.00
conf b 1.00 1.00
honka 1.00 —
sauna 0.99 —
activity 0.79 —

Table 8. Overfitted validation success rates after 20M steps.

	Real-world Deployment on Stretch Robot
	Generating ImageNav episodes
	Examples for DN and Polycam rendering
	Expanded Related Work
	3D Scene and Mesh Reconstruction
	3D Scene Representation in Robotics

	Mesh Processing using Blender
	Episode Statistics for Generated Datasets on Captured Scenes
	Depth and Normal Encoder Selection for DN-Splatter
	Agent, Training, and Evaluation Details
	Real-world metrics for successful episodes
	Simulation results on additional real-world scenes
	Failure modes for HM3D zero-shot on lounge scene in simulation
	Overfitting vs. Fine-Tuning

