

TL;DR

Problem 1: Indoor human-robot interaction requiring GPS is impractical due to unreliable indoor GPS systems.

Solution <a>

 social navigation with minimal human GPS data.

Result Y: Comparable performance to GPS-dependent methods with fewer samples, using only initial GPS observations.

Introduction

Challenge Challenge Charter: Embodied Social Navigation in indoor scenes with unreliable or unavailable GPS data.

Current Ideas 🔮 : Over-reliance on GPS, impractical in real-life.

Objective O: A policy robust to limited/no GPS availability.

Task Details

Task: Habitat 3.0 SocialNav: agent finds and follows a human while avoiding collisions, humans follows random path.

Metrics: Finding Success (FS), Following Rate (FR), FS weighted by Past Steps (SPS), Collision Rate (CR), Reward (R);

Curriculum Learning for GPS-Free Indoor Social Navigation Gunjan Chhablani*, Madhura Keshava Ummettuguli*, Siva Kailas*

Curriculum Learning:

- Levels: 1 to 1500, determining interval of availability.
- Training Steps: 300M, with level update every 10M steps.
- Thresholds: Train FS to adjust curriculum difficulty.

GPS Representation Strategies:

- **ZeroGPS** : Use (0,0) when GPS is unavailable.
- LastGPS : Use last known GPS location.

Curriculum Update Strategies:

- Additive : Fixed increment/decrement based on FS.
- Multiplicative : Frequency doubles/halves based on FS.
- **Dynamic Additive** \checkmark : Variable additive scaled with FS.

Best Eval FS

Performance Comparison: and fewer samples. **Top Performing Strategies:**

Summary:

Conclusion and Future Work

This Work: Curriculum matches the performance of NoGPS baseline with fewer samples.

Next: Focus on reducing CR, improving SPS, active exploration.

Results

- Full (all sensors): FS = 0.98, stable performance.
- NoGPS (no GPS): FS = 0.92, variable performance.
- Curriculum: Achieve similar FS as NoGPS with better stability
- Dyn-Add-LGPS: High FS, fewer iterations.
- Add-ZGPS: High FS but requires more iterations.

• Mul-ZGPS: Poor with ZeroGPS, good with LastGPS • Add-ZGPS/Dyn-Add-ZGPS: Good FS, stable performance. • Dyn-Add-LGPS: Best overall performance, stable FS.